3.366 \(\int \frac {1}{\sqrt {1+\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=125 \[ \frac {\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sin ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}-\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sin ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{d}+\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)+1} \sqrt {\sec (c+d x)}} \]

[Out]

sin(d*x+c)/d/(1+cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)-arcsin(sin(d*x+c)/(1+cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*se
c(d*x+c)^(1/2)/d+arcsin(sin(d*x+c)/(1+cos(d*x+c)))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4222, 2778, 2982, 2781, 216, 2774} \[ \frac {\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sin ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}-\frac {\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sin ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{d}+\frac {\sin (c+d x)}{d \sqrt {\cos (c+d x)+1} \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 + Cos[c + d*x]]*Sec[c + d*x]^(3/2)),x]

[Out]

(Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d - (ArcSin[Sin[c + d*
x]/Sqrt[1 + Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d + Sin[c + d*x]/(d*Sqrt[1 + Cos[c + d*x]]*S
qrt[Sec[c + d*x]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2778

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-2*d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/(b*(2*n
- 1)), Int[((c + d*Sin[e + f*x])^(n - 2)*Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n -
3))*Sin[e + f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2781

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Dist[Sqr
t[2]/(Sqrt[a]*f), Subst[Int[1/Sqrt[1 - x^2], x], x, (b*Cos[e + f*x])/(a + b*Sin[e + f*x])], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {1+\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\cos (c+d x)}} \, dx\\ &=\frac {\sin (c+d x)}{d \sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}}-\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-1+\cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx\\ &=\frac {\sin (c+d x)}{d \sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}}-\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {1+\cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx+\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {1+\cos (c+d x)}} \, dx\\ &=\frac {\sin (c+d x)}{d \sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,-\frac {\sin (c+d x)}{\sqrt {1+\cos (c+d x)}}\right )}{d}-\frac {\left (\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2}} \, dx,x,-\frac {\sin (c+d x)}{1+\cos (c+d x)}\right )}{d}\\ &=\frac {\sqrt {2} \sin ^{-1}\left (\frac {\sin (c+d x)}{1+\cos (c+d x)}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}-\frac {\sin ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {1+\cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {\sin (c+d x)}{d \sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.88, size = 257, normalized size = 2.06 \[ \frac {i e^{-2 i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt {\sec (c+d x)} \left (-e^{i (c+d x)}+e^{2 i (c+d x)}-e^{3 i (c+d x)}+e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )+2 \sqrt {2} e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {1-e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )-e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )+1\right )}{4 d \sqrt {\cos (c+d x)+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 + Cos[c + d*x]]*Sec[c + d*x]^(3/2)),x]

[Out]

((I/4)*(1 + E^(I*(c + d*x)))*(1 - E^(I*(c + d*x)) + E^((2*I)*(c + d*x)) - E^((3*I)*(c + d*x)) + E^(I*(c + d*x)
)*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSinh[E^(I*(c + d*x))] + 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*
x))]*ArcTanh[(1 - E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] - E^(I*(c + d*x))*Sqrt[1 + E^((2*I
)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[Sec[c + d*x]])/(d*E^((2*I)*(c + d*x))*Sqrt[1 + Cos[
c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 125, normalized size = 1.00 \[ -\frac {{\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right ) + d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-((sqrt(2)*cos(d*x + c) + sqrt(2))*arctan(sqrt(2)*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c)) - (c
os(d*x + c) + 1)*arctan(sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c)) - sqrt(cos(d*x + c) + 1)*sqrt(
cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {\cos \left (d x + c\right ) + 1} \sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(cos(d*x + c) + 1)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 0.22, size = 159, normalized size = 1.27 \[ \frac {\sqrt {2+2 \cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \left (-1+\cos \left (d x +c \right )\right )^{3} \left (\sqrt {2}\, \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {2}}{2 d \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sin \left (d x +c \right )^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x)

[Out]

1/2/d*(2+2*cos(d*x+c))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^3*(2^(1/2)*arcsin((-1+cos(d*x+c))/sin(d*x+c))-(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))/(1/cos(d
*x+c))^(3/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)/sin(d*x+c)^6*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {\cos \left (d x + c\right ) + 1} \sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(1+cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(cos(d*x + c) + 1)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {\cos \left (c+d\,x\right )+1}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((cos(c + d*x) + 1)^(1/2)*(1/cos(c + d*x))^(3/2)),x)

[Out]

int(1/((cos(c + d*x) + 1)^(1/2)*(1/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {\cos {\left (c + d x \right )} + 1} \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(3/2)/(1+cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(cos(c + d*x) + 1)*sec(c + d*x)**(3/2)), x)

________________________________________________________________________________________